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ABSTRACT

The research summarized concerns several aspects of the propagation and scattering

of acoustical and optical waves. The topics discussed fall under the following five

categories:

A. Acoustical scattering theory and experiments for elastic objects in water (the

coupling of sound with surface waves on fluid loaded elastic objects as

described by a generalization of GTD, confirmation from measurements of

focused backscattering due to Lamb waves on a spherical shell);

B. Light scattering from real bubbles and microbubbles in water (the unfolded

glory or backscattering pattern of an oblate bubble in water, observation of

Brewster angle scattering of polarized light and the effects of adsorbed films

which may coat the bubble);

C. Production of sound by a drop or bubble in water illuminated by modulated

laser light and the optical levitation of bubbles;

D. Acoustical and optical diffraction catastrophes (theory and optical simulation of

transverse cusps, experiments with acoustical transverse cusps produced by

reflection from smooth surfaces and the merging of echoes at caustics, the

wavefield in a hyperbolic umbilic focal section, applications to the theory of

shock wave focusing);

E. Acoustical phase conjugation (theory of the focal-point shift for the reversed

wave resulting from three-wave mixing in a bubble layer, experimental

evidence for the existence of such a wave).
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1. P. L. Marston, 'Trransverse cusp diffraction catastrophes: some

pertinent wavefronts and a Pearcey approximation to the wavefield,"

Journal of the Acoustical Society of America la, 226-232 (1987).
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2. W. P. Arnott and P. L. Marston, "Optical glory of small freely-rising

gas bubbles in water. Observed and computed cross-polarized
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C. Books (and sections thereof) Published: (Note-these items were

typically subject to review by committee or by a topical editor):

S1. D. S. Langley and P. L. Marston, "Forward optical glory of bubbles:

Theory and Observations," in Proceedings of the 1985 Scientific
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Conference on Obscuration and Aerosol Research edited by R. H.

Kohl (Chemical Research Development and Engineering Center,

Aberdeen Proving Ground, MD, 1986) pp. 4 11-412.

2. P. L. Marston and E. H. Trinh, "Diffraction catastrophes and inverse

scattering from spheroidal drops," in same proceedings as the

preceding item, pp. 439-440.

3. P. L. Marston and D. S. Langley, "Forward optical glory from bubbles

(and clouds of bubbles) in liquids and other novel directional caustics,"

in Multii~le Scattering of Waves in Random Media and Random Routh

Suaces edited by V. V. Varadan and V. K. Varadan (Pennsylvania

State University, University Park, PA, 1987) pp. 419-429.

D. Books (and sections thereof) Submitted for Publication:

1. P. L. Marston, "Surface shapes giving transverse cusp catastrophes in

acoustic or seismic echoes," for Acoustical Imaging Vol, 16

[Proceedings of the 16th International Symposium on Acoustical

Imaging, Chicago, June, 1987] edited by L. W. Kessler (Plenum, to

be published).

2. P. L. Marston, "Wavefront Geometries Giving Transverse Cusp and

Hyperbolic Umbilic Foci in Acoustic Shocks," for the Procedigs f

the APS 1987 Toical Conference on Shock Waves in Condensed

Matte Monterey, California, 20-23 July, 1987, edited by S. C.

Schmidt and N. C. Holmes (North Holland Publishing, to be

published).
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4. W. P. Arnott and P. L. Marston, "Backscattering of light from

spherical and slightly spheroidal air bubbles in water: A novel

unfolding of the glory," J. Acoust. Soc. Am. Suppl. IQ, 73 (1986).

5. P. L. Marston and S. C. Billette, "Scattering of light by a coated
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Quantitative GTD for elastic objects in water," J. Acoust. Soc. Am.

Suppl. 81, 14 (1987).

7. P. L. Marston, "Hyperbolic-umbilic focal sections: The wavefield and

the merging of rays at caustic lines," J. Acoust. Soc. Am. Suppl. 21

14 (1987).

8. S. G. Kargl and P. L. Marston, "Focused backscattering from hollow

spherical shells in water. Lamb waves and the acoustical glory," J.
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G. Reports Issued:

1. P. L. Marston, Annual Summary Report No. 6. Resar, gng.

Acoustical Scattering. Diffraction Catastrophes. Optics of Bubbles.

Photoacoustics. and Acoustical Phase Conjugation, issued October

1986 (available from the Defense Technical Information Center,

Cameron Station, Alexandria, VA, Accession No. AD-A174401) 48
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2. S. C. Billette and P. L. Marston, "Computational Analysis of the
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1. Bruce T. Unger. "Optically Stimulated Sound from Gas Bubbles in
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2. Steven G. Kargl, "Focused Backscattering of Lamb Waves from

Elastic Spherical Shells in Water," M.S. Project paper, July, 1987.

(Note: This was not a formal thesis since none was required. This

paper was thesis quality.)

II. PREFACE; EXPLANATION OF CITATION SYSTEM USED FOR

REFERENCES; AND LIST OF GRADUATE STUDENTS SUPPORTED

This report summarizes progress in research supported by the contract tided.-

"Propagation and Effects of Acoustical and Optical Waves." The emphasis of the report is

on progress subsequent to that described in the previous Annual SmnmMarRpot item GI

in the preceding list of "External Communications." However, for continuity, certain

rrsearch items discussed there will also be mentioned. The principal sections (indicated by

different Roman numerals) may be read indenendently of each other.

The following reference system is used in this report. References to recent external

communications supported by this contract will be made by giving the section letter and

number of the list given in Sec. I of the present report. For example, the first item listed in

Sec. I is referenced as A1. Reference to other literature, including earlier work supported

by this contract, are listed in Sec. IX. The first item in that list is referenced as 1.

The following students were supported either entirely or in part by the contract

during the period October 1, 1986 - September 30, 1987.

1. William Pat Amott

2. Steven G. Kargi

3. Cleon E. Dean

4. Carl K. Frederickson

~~~~~~~~~ J gV* . J'.'1 LL
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In addition, the following former student was supported on a part-time basis for

work towards the completion of manuscriptsB3 and other contract related tasks.B1

1. Bruce T. Unger

III. ACOUSTICAL SCATTERING THEORY AND EXPERIMENTS

A. Motivation for this Research: An Overview.

The general motivation for research into acoustic scattering from elastic objects of

simple shape has been discussed previously. 1-3 The present workBI F6,8J4 2 emphasizes

the generalization of the geometrical theory of diffraction (GTD) so as to give quantitative

predictions of surface elastic wave (SEW) contributions to the scattering from spheres

based on simple expressions. It may be thought that scattering from elastic spheres is too

specialized of a problem to be of any practical consequence; however, we intend to show

that our quantitative modeling of the surface-wave contributions to scattering, which we

have studied for spheres, is helpful for understanding the echoes from complicated elastic

structures. The experiments on the backscattering of sound from elastic hemispheres in

water (described in Ref. G 1) were a step in that direction. The previous work on the

quantitative prediction of surface wave contributions to the scattering from elastic spheres

was concerned with solid spheres 3-5 whereas the emphasis of the current experiments is on

hollow (air-filled) elastic spheres. In all cases the surrounding medium is water.

One important aspect of our research is our ability to model and measure scattering

amplitudes not just in the exact backward direction but also in near backward directions

since the width of the diffraction lobes in near-backward directions are indicative of the

target's size. 3

Ne
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B. Coupling of Sound with Surface Waves on Fluid-Loaded Elastic

Objects Described by a Generalization of GTD.

The geometrical theory of diffraction (GTD) was recently extended to describe

surface elastic wave (SEW) contributions to scattering from fluid-loaded spheres and

cylinders at high frequencies.BI1F 6 The coupling of a SEW with the acoustic field was

described by a complex "coupling" coefficient G1. The original introduction of GI into

the description of scattering was through the application of the Sommerfeld-Watson

Transformation (SWT) to the partial-wave series for the scattering from a solid elastic

sphere.4 ,5 (Since that work was funded through the present contract it is reviewed in the

previous Annual Reports. 3,Gl) For the purposes of the present discussion we need only

note the form of the equations given by the SWT. Consider first the case of an incident

tone burst which is sufficiently LIr that the SWT echoes do not overlap but sufficiently

Ione that a narrow-band calculation for the SEW parameters can be used. (The calculation

of the SEW parameters assumes a single frequency and hence a single size parameter ka, a

= sphere radius, k = 21c/wavelength in water.) This turns out to be an accurate assumption

for the experiments described below in Sec. IJIB. Let Ipil denote the pressure amplitude

of the incident tone burst and let 'pmI denote the amplitude of the m echo for a given class

I of SEW echo. The SWT gives Ipm' = 1pil Aml a/2r, r is the distance from the center of

the sphere and 3,4

-(- O l -2nm[Pt

AM1 = IG1le e , (1)

where the earliest SEW echo is designated by m =0 and subsequent echoes by m = 1,

2.

The parameter PI specifies the value of the radiation damping for the I class of

SEW at the frequency specified by ka. Let cl and c denote the phase velocities for the

SEW and the acoustic waves in the water. The angle 01 = sin-(c/ci) has the significance



of being the local angle of incidence where the incident wave and the SEW are coupled.

The important point here is that while both 031 and cl (and hence 01) are relatively easy to

calculate for Eq. (1), the full expression for GI is difficult to interpret physically and has

been evaluated only through numerical differentiation on a computer.4 Furthermore, the

exact expression for GI for the case of a hollow sphere (see Sec. MC), has yet to be

* found. Hence the derivation of a simple physical approximation to GI was justified.

The SWT also gives the following expression for the contribution to the form

function f for the case of steady-state backscattering 5

-Ge •(2)

fl [f + j exp(-27r3 t + i2xcxc/c)]

where x a ka and for the present problem of spheres j = +1 and il is a propagation

related phase shift which has a simple physical form. The expression Eq. (2) may be

referred to as a Fabry-Perot representation for the amplitude since the denominator is

formally like the one which appears in the analysis of Fabry-Perot resonators. The exact

SWT result for G! was used to show 5,GI that a superposition of a specular reflection with

various fl can give an accurate approximation of the total Ifi for solid spheres for ka as

small as 10. No Franz wave ("creeping wave") contribution was needed to obtain an

accurate synthesis.

The new analysis gives the following simple approximation for the case of a

spherical scattererB 1,F

G- G', IG'P(x)I = 8noclc, . (3ab)

The correctness of this approximation was confurmed by comparing IGI'P(x)I with IGC(x)l

as given by the SWT for two different classes of SEW and two different sphere materials in

water.

-. . ." . . . - ,-...,...- '. ', " .".-,..' .,."".',. . ..%,'.'......'."- .. _'.-,L,,. " ".%" ' : " ' ", "* """-" "' " "" "" " "7 " '' '''g " - ' ' ' " 't ' d' " ¢" _I
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The comparison is shown in Figs. 1 and 2. It is noteworthy that the approximation

Eq. (3) is nore accurate than might have been anticipated from the derivation which was

based on a comparison of Eq. (2) with the local resonance form given by Resonance

Scattering Theory. It is noteworthy that the proportionality of GPsP on 13t and c/ct can

be argued from GTD-based concepts.

Note that the 2h= of GtSP is not specified by Eq. (3). The numerical calculations

of the phase of GI suggest that it is an accurate approximation to takeBi

argG o. (4)

The usefulness of the resulting approximation GI - 87tl~ c/ct has been confirmed by Dr.

Kevin L. Williams of the Naval Coastal Systems Center. Williams found that if this

approximation is used in Eq. (2), the resulting synthesis of Ifl is in good agreement with

both the exact Ifl and the synthesis based directly on the SWT for the specific case tried6

(tungsten carbide in water).

For the case of a Rayleigh wave, at large values of ka the following approximation

for the radiation damping coefficient is usefulBI

PR(ka) = ka 13R(oo), (5)

where the factor 13R'(*) may be calculated from an approximationBI which does not

require the solution of transcendental equations. The energy conservation method used to

obtain 13R'(-) is known to be applicable to cases where the substrate has anisotropic

elastic properties and for other SEW types in addition to Rayleigh waves.

Consider now the steady state backscattering of a plane wave from a circular

cylinder of radius a. The pressure pscat at a distance r from the center of a cylinder of

radius a is

Pscat : (a/2r)1/ Pif e i (6)

.a au.' -% . •ii
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15] 1.61

*I~nI

,0 1 1 """ '  0.8oor

0.4
3

0 "0.0
10 20 30 40 s0

ka

Fig. 1. The modulus of the coupling coefficient G1 for the Rayleigh ad slowes
whispering Palery waves for an aluminum sphere in water. For each class of wave, IGjI
was obtined by two different methods. The points are from numerical evaluation of the
direct result of the Sommerfeld Watson transformation. The corresponding curvU AMu
from the simple approximation given as Eq. (3b). The low end of the plotted ka range was
set to avoid possible numerical inaccuracy (see Ref. 5). It does not necessarily indicate the
lowest ka where Eq. (3b) is applicable.
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Fig. 2. Like Fig. I but for a tungsten carbide sphere in water.
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where f is the complex form function. For the Ith class of SEW the contribution to f has

a Fabry-Perot representation given by Eq. (2) withBI j = -1. The difficulty in applying this

result is that an exact expression for GI in the case of cylinders is not known. The method

of approximation leading to Eq. (3) was repeated for cylinders with the result
cy Ic l1/2G MG IGL(x)I = 8xP3/(xx) , (7a,b)

where x = ka. For a specific case of a Lamb wave on a hollow cylindrical shell in water,

numerical data are available which indicate that Eq. (7) is an accurate approximation. The

ratio IGsMPfGtCYI may be derived independently from GTD-based arguments.B1

C. Focused Backscattering of Sound from Elastic Spherical Shells in

Water Due to Lamb Waves on the Shell (S. Kargl)

This work is the research project of Steve Kargl which was used towards the

fulfillment of the requirements of an M.S. Degree in Physics.H 2 The ray diagram for the

Lamb wave contributions to the backscattering from a hollow shell is shown in Fig. 3. In

the experiments, the sound wave incident on the sphere was a tone burst having a duration

of 4 cycles. Representative records for backscattering are shown in Fig. 4. The record in

Fig. 4(i) is the case of a solid tungsten carbide sphere in water. The Rayleigh echo

amplitudes are known4 to be described by Eq. (1). The other records, Fig. 4(ii), (iii), and

(iv) are for a hollow stainless steel sphere having an outer radius a = 1.905 cm and an

inner radius b with b/a = 0.84. Two types of SEW echoes were identified for the hollow

sphere. These are the echoes associated with the first antisymmetric Lamb wave (denoted

by A) and the first symmetric Lamb wave (denoted by S). The antisymmetric wave is a

flexural wave while the symmetric wave is essentially a dilatational wave. The time delays

of the SEW echoes relative to the leading edge of the specular reflection have been

measured for ka from 24 to 75 and are in good agreement with the GTD based theory.
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C1'

A;

.

Fig. 3. The diagram demonstrates the "ray" acoustic analysis of the Lamb waves on an

elastic shell. The point C is the point of tangency of an incident plane wavefront with the
shell. The point B is the location for coupling the Lamb wave acoustic field to the shell
and point B' is the radiation point for backscattering. The angle 01 is determined by the

phase velocity trace matching condition. The radius b is the location where a virtual ring-
like source cuts the plane of the page at Fl. The ray A'B' is the "glory ray" and the ray
DFI is the ray that is focused on-axis at the detector.

N N
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- SP

R R R

I, t

4 1

*SP A

SP A

SP A

(iv)

-4 4~S

Fig. 4. The backscattering for (i) solid tungsten carbide sphere, (ii) 440C stainless steel
shell at a frequency f = 0.80 MHz, (iii) 440C stainless steel shell at f - 0.85 MHz, and
(iv) 440C stainless steel shell at f = 0.45 MHz. The specular reflections, Rayleigh surface
wave echoes, first antisymmretric (flexural) Lamb wave and first symmetric (dilatational)
Lamb wave are denoted by SP, R, A, and S respectively. The arrows designate the
positions of peak-to-peak voltage measurements.
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.41.

Before considering the amplitudes of the various SEW echoes, it is appropriate to

note a novel feature of the specular echoes in Fig. 4(ii) and (iii). In those cases a long

ringing tail follows the relatively square topped specular echo. This tail appears to be a

consequence of the reverberation of a bulk longitudinal wave within the shell. The shell

thickness is 3.1 mm so that the round-trip transit time of such a wave is only 6.2 mm/5.85

m/prs = 1.06 ps. The frequency of the lowest resonance of such a thickness mode for the

shell should be approximately (1.06 gs) -1 = 0.95 MHz. The experiments showed the

ringing was most pronounced when the frequency of the burst was in the range 0.85 to

0.95 MHz which supports the idea that it results from a thickness (longitudinal) mode of a

plate which has been curved into the form of a shell.

Let us return now to the central problem of interest, the amplitudes of the Lamb

wave echoes for backscattering labeled A and S in Fig. 4. It is convenient to express

echo amplitudes for the mth echo of the Ith class of SEW with the following normalization

(see above Eq. (1)):
1Pm1 2r

Am, 1  , (8)

where Ipml is the echo amplitude, r is the distance to the hydrophone, and a is the sphere

radius. In the experiments, the quantities Ami are for m = 0 and 1 = S or A.

Calibration was achieved by comparison with the specular echo amplitude from a tungsten

carbide sphere.H - The resulting measured normalized amplitudes AOj over a range of ka

are shown in Fig. 5. Figure 5 also shows curves (the small points) which are given by

evaluating Eq. (1) with IGII given by Marston's approximation, Eq. (3). It is important to

note that there is presently no exact theory available for calculating GI in the case of a

hollow sphere. In the region of ka from 45 to 55 the meaning of the measurements is not

clear since the echoes due to the symmetric and antisymmetric Lamb waves overlap in time.

Outside this region the agreement is satisfactory. At large ka, the variation in the data for
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Fig. 5. The theoretical normalized backscantered amplitudes (dotted lines) for the first

antisymmretric and symmetric Lamb waves are compared with experimental data. The
upper curve (dots) corresponds to the theory for the first antisymmetric mode while the

lower curve (dots) is for the first symmetric mode.. The low ka data are correctly
predicted. The high frequency data may be affected by various experimental problems (see

Kargr's "thesis," Ref. H2).
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the antisymmetric amplitude may be due to interference with the aforementioned tail from

ringing which follows the specular echo (see Fig. 4(iii)).

Consider now the dependence of the echo amplitude for a given class of SEW on

the backscattering angle y. The physical reasoning leading to axial focusing for SEW

echoes from solid spheres 7 also applies to Lamb waves on hollow spheres. Indeed, in the

* previous annual report G1 Lamb wave echoes were demonstrated to be axially focused,

however, since IG11 was not known, complete quantitative predictions for the amplitude

were not possible. Use of Eq. (3) made quantitative predictions possible. The solid curve

gives the predicted echo amplitude for the earliest antisymmetric Lamb wave (i.e. the

flexural wave). The sphere is the aforementioned hollow stainless steel sphere with ka =

24.3 and the normalization is relative to the specular reflection from a tungsten carbide

sphere having a radius of 12.7 mm. The data are in good agreement with the theory except

for the case (unshaded diamonds) where y is small and the ITC hydrophone was used for

the receiver. Because of the large size of the ITC hydrophone a portion of the incident

wave is blocked by the hydrophone when y is small and the echo amplitude is reduced.

The agreement was good in the central region, however, when a smaller hydrophone was

used (shaded symbols). There are no adjustable parameters in the model.

IV. LIGHT SCATTERING FROM BUBBLES IN WATER: EMPHASIS

ON "REAL" VERSUS "IDEAL" BUBBLES

A. Motivation and Review

This contract has previously supported research towards understanding the

scattering of light from bubbles in water. The general approach and some possible

applications in acoustics were reviewed in a previous Annual Summary Repor. 3 Until

recentlyG I,G2 the research emphasized the case of spherical bubbles having a gas-liquid

interface free of adsorbed layers of molecules.

"'. ' . ... .-. .. :.. . .....-. . .: ..:.* .... .;* -. * . . .... " " " " 'i " " " " " ".. . * ' 1 " ' A
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B. Observations and Theory of Optical Backscattering from Freely

Rising Bubbles in Water: The Unfolded Glory of an Oblate

Bubble (W. P. Arnott)

Previous work on this problem by a graduate student, W. P. Arnott, is reviewed in

the previous Annual Summaryeport.k L During the past year Amott has made progress

towards completing a Ph.D. dissertation on this (and a similar problem relating catastrophe

theory to backscattering from a spheroidal bubble) through the following activities:

(1) Experiments and theory for spherical bubbles in water.-It was apparent that

prior to writing up a description of the perturbation theory for backscattering of

light from slightly spheroidal bubbles, it would be necessary to give a more

complete description and experimental test of the physical optics model for

backscattering from bubbles in water which are sufficiently small so as to

remain spherical as they rise through water. It was found that the

backscattering pattern is essentially that of a sphere for bubble diameters

D < 0.3 mm. Additional data were obtained for scattering from small bubbles

in this size range and a novel method of inferring the bubble size from the

details of the backscattering pattern was demonstrated. Arott has prepared a

manuscript which describes both the experiments and the detailed physical

optics model and this has been submitted for publication.B2 Figure 7 shows

several backscattering patterns which both illustrate the phenomena studied and

the mutual agreement of the observations with exact Mie theory as well as the

physical optics model. These may be compared with the previous results for

bubbles in oil. 8

(2) Further development of the perturbation model for the backscattering of light

from slightly spheroidal air bubbles rising in water.-As discussed in the

previous Annual Summary Report,Gl when the diameter of the bubble in water

M
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a) b

4 dog.

Fig. 7. Photographs of cross-polarized near backscattering by a freely rising bubble in

water. The first and third quadrants of each composite pattern are computer-generated

results from physical optics and Mie theory, respectively. White lines are borders of the

synthesized patterns. In a, the experimentally measured radius was 123 g~m, and best fit

radius was 121.0 g~m. In b and c, the radii were not measured and the best fit radii were

122.0 and 130.0 gim. In d, the experimentally measured radius was 140 g~m while the best

fit radius was 140.2 gm.

i . . . . . . . . . . . .
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exceeds 0.3 nun, the symmetry of the scattering pattern changes. This

evidently is a consequence of the oblate shape the bubble has in response to

distribution of hydrodynamic stresses. A model was developed which starts

with the physical optics model for spheres and correctly accounts for a small

amount of oblateness.F2,F4 The model adequately matches observed patterns

for bubble diameter D < 0.4 mm. During the present contract period Arnott

has made improvements to the model.

(3) Unfolding of the axial caustic for moderately oblate bubbles.-For bubbles

having diameters D > 0.5 mm, the observed backscattering patterns were

qualitatively different than those predicted by the perturbation theory since the

theory assumed the oblateness of the bubble is finite but small. A different

approach has been developed to facilitate an understanding of these patterns.

Recall that for a spherical bubble the far-field caustic corresponds to a point in

a given direction. The actual scattering pattern (see e.g., Fig. 7) corresponds

to a diffraction pattern which is said to "decorate" the caustic. This pattern"d

depends on polarization. Cross-polarized scattering is studied because it
minimizes background noise.

Arnott has developed a model appropriate for larger bubbles which

connects this work with the work Marston has been doing on transverse cusp

diffraction catastrophes in optics9 and acoustics.Al Specifically he has found

that the axial directional caustic for backscattering from a sphere unfolds (in

response to the broken symmetry of the spheroid) so as to produce a connected

set of 4 transverse-cusp diffraction catastrophes. See Fig. 8. This is

consistent with a conjecture by the British physicist M. V. Berry concerning

the unfolding of axial caustici. 10 It is noteworthy that Arnott's analysis is

,a clear as to the cause of these cusps and the results should be of general interestiners

d 
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Fig. 8. (see next page) Shape of the far-zone caustic for backscattering by an oblate

bubble of equitorial diameter 585 gm. The experimental caustic in the lower figure is

decorated by a spoked diffraction pattern. (Background noise was significant for this

preliminary data.) In the lower figure, the calculated caustic outlines the experimental

pattern. The axis scales are (U,V) = (u/f, v/f) where f is the focal length of the camera

lens and uv are actual distances (horizontal and vertical) measured on the film negative.

I i
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outside the specific application to backscattering from bubbles. The shape of

the outgoing wavefront is as shown in Fig. 9 of the previous Annual Summary

Ro.Gl

Figure 8 was computed for a bubble having a diameter of 0.585 mm.

An off-set from the center of ± 35.54 units on the scale shown corresponds to

a deviation from backscattering of ± 0.03554 radians (- ± 2.0 degrees). The

size of bubble used in the theory corresponds to the size (by direct

measurement) of the bubble which produced the (cross-polarized)

backscattering pattern also shown in Fig. 8 (lower part). The angle scale is the

same as that for the theory so that figures may be overlayed. In agreement

with the theory, the angular region inside (and adjacent to) the cusp curves

appears bright.

(4) Other research by P. Amott.-Arnon has assisted Marston and other students

working on this project with numerous problems related to computer graphics.

Arnott has also been working on applications of classical differential geometry

to the tracing of wavefront (see Sec. VI).

C. Scattering of Light from a Coated Spherical Air Bubble in Water:

A Computational Study of the Optical Effects of Adsorbed Films

(C. E. Dean)

The motivation and general results on this problem are discussed in the previous

Annual Sumr Re 1 and in a separate reportG2 .11 C. Dean began work on the

present contract in autumn 1986 and was half supported by a recruitment fellowship (WSU

funds). One of the first projects Dean worked on was to complete various computational

tasks so that the work on scattering from coated bubbles done originally with S.

BilletteFI F5 (now with Hughes Aircraft) could be put in a form suitable for publication.

I
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D. Observations of Brewster Angle Scattering from Freely-Rising

Air Bubbles in Water (S. Biumer)

For reasons noted below, Stefan Blumer has been attempting photographic

observations of the Brewster angle scattering from bubbles in water. Blumer has been

attending WSU with the support of a fellowship from his native country of West Germany.

He requested the opportunity to work on an optics-related experiment for an M.S. thesis

project. He has been carrying out experiments on a part-time basis since Autumn 1986 (but

he was away during summer 1987). Though he has not been supported financially by

contract funds, his laboratory supplies have been provided by contract resources since the

objectives of his experiment are in line with those of proposed research.

To understand the motivation for Blurner's experiments, it is helpful to review the

reflective properties of a bubble in water. 12,G2 Consider first the geometric theory for

polarized light reflected from the surface of an air bubble in water. The intensity of the

reflected light corresponding to rays having a given angle of incidence at the bubble's

surface, will depend on the local reflection coefficient. If the light is polarized parallel to

the scattering plane, the flat surface reflection coefficient has a zero when the local angle of

incidence is 1B = 36.9 deg for a water-to-air interface. The reflection from the curved

bubble surface should be minimized near the corresponding "Brewster Scattering Angle"

which is (180 deg - 2 iB) = 106.2 deg. See Ref. 11, 12, and G2. Mie theory gives the

exact scattered irradiance for an uncoated spherical bubble. The solid curve in Fig. 9

shows the scattered irradiance predicted for an uncoated bubble in water having a radius ,

0.061 mm = 61 gm for green light (here klight a = 1000). The following features are

evident in the region of the Brewster scattering angle (106.2 deg): (i) the contrast in the

fine structure modulations is minimized near 106 deg; and (ii) the mean irradiance is small

near that angle. The irradiance in this figure is normalized to that reflected from a perfectly

reflecting sphere of the same size.

Vm
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Fig. 10. Relative optical transmittance of a photographic negative which recorded the

scattering pattern from a freely rising air bubble in water in the region of the Brewster
scattering angle. In agreement with the solid curve of Fig. 9, the contast in the fringe

structure was minimized near 106 deg which suggests that the bubble did not have a

significant coating.
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Now consider the predictions shown in the dashed curve in Fig. 9. This curve was

J computed for a coated bubble by evaluating the appropriate partial-wave series. I1.G2 The

• coating thickness h = 0.43 gm (for green light) and refractive index nc = 1.50 which is

representative of an oily coating on the bubble. The radius of the gas pocket is the same as

for the uncoated case (solid curve). Note that near 106 deg. there are two major changes

relative to the uncoated case: (i) the contrast in the fine structure modulations is greatly

enhanced, and (ii) the mean irradiance is shifted upwards.

From the discussion above, it is evident that observations of near Brewster angle

scattering from freely rising air bubbles in water may provide a method for determining the

thickness of an oily coating on the bubble. This is the motivation for Blumer's

observations though at present he has only examined the scattering from what are thought

to be clean uncoated bubbles. The method for recording the scattering pattern is

photography. Photographic negatives are scanned using the optical microdensitometer (of

the WSU Shock Dynamics Laboratory). The "raw" form of the data is the optical

transmittance of the negative as a function of position on the negative. Figure 10 shows a

representative negative where the position on the negative has been converted to scattering

angle. The bubble radius was 90 gm which is in the general range of sizes where features

like those in Fig. 9 should be manifest. Inspection of Fig. 10 demonstrates one of the

significant features of Brewster angle scattering: the contrast of the fringe structure is

minimized near 106 deg. Unfortunately, the Brewster scattering features appear to be

superposed on a smooth background (which appears not to be caused by scattering by the

bubbles). One of Blumer's next tasks is to minimize this background and to develop a

method of subtracting it off so as to better display the features of Brewster angle scattering.

ft.V
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E. Optical Detection of Sound by Monitoring the Time Dependence

of Light Scattered from Bubbles

The measurement of the time dependence of light scattered from bubbles was

suggested as a method for the remote detection of sound by optical means.1I During the

present contract period, estimates have been done of the sensitivity of this method for the

case where the acousto-optic coupling is through a shift in the fine structure near the critical

scattering angle. Near that angle the scattering is strong and the fine structure is easy to

detect. 13,G IG2 The acquisition of a new 500 gallon water tank should make possible

ft experiments for detecting the arrival of tone bursts (frequency - 300 kHz) at a bubble by

means of light scattering. Unfortunately this has not yet been possible since the tank has

been used for other experiments (see Sec. VI and VII).

Some comments on the anticipated sensitivity are merited. Perhaps the simplest

method of detecting sound by way of light scattering is to suspend a neutrally buoyant

scatterer of light which undergoes translatory motion (along with the water) in response to

a sound wave. This motion may then be detected with the Doppler effect though there are

at least two problems: (i) relative to the proposed bubble mechanism the sound amplitude

required to produce the displacement of one fringe may be large and (ii) the light may be

subjected to phase disturbances when traveling to and from the scatterer which would

produce a background modulation. For the proposed fine-structure bubble mechanism, it

is anticipated that the phase disturbances of the intermediate media will be less of a

problem. This is because the light which interferes has been reflected from two different

sides of the bubble. Phase shifts due to propagation to and from the scatterer should not

greatly effect the sensitivity. An order-of-magnitude estimate suggests that there will be a

* somewhat larger fringe shift with the bubble method than with the neutrally buoyant

scatterer method though it is necessary for the sound to be at a frequency below the

resonance frequency for the bubbles.
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F. Forward Scattering of Light from Bubbles in Liquids

This work was carried out in 1984 as part of the Ph.D. dissertation project of D. S.

Langley. 13 During the past year brief descriptions of the experimental results were

published.ClC 3 Langley has been preparing a more detailed description of the experiment

and of the theory but has been delayed by a move from Whitman College to the physics

faculty of St. John's University (Collegeville, MN).

V. PRODUCTION OF SOUND BY A PRE-EXISTENT BUBBLE IN

WATER ILLUMINATED BY MODULATED LIGHT: A NOVEL

PHOTO-ACOUSTIC SOURCE AND RELATED EXPERIMENTS ON

THE OPTICAL LEVITATION OF BUBBLES AND ON THE SOUNDS

PRODUCED BY ILLUMINATED DROPS (B. T. UNGER)

A. Review and Summary

The previous Annual Summary .,01orts3 ,o I describe experiments and a simple

model for the production of sound by bubbles in water illuminated by modulated laser

light. These experiments and the development of appropriate theories for the sound

radiated from drops and bubbles were the Ph.D. dissertation problem of a graduate student

B. T. Unger. Unger completed his dissertationHi in December 1986. At the same time he

completed the State's requirements to certify as a public school teacher. From January -

July 1987, Unger worked part-time towards the completion of manuscripts on this work

for publication while supporting himself primarily through temporary or part-time teaching

assignments. He has recently moved to the Seattle-Tacoma area where he is seeking

employment in education. Only a brief outline of the progress will be noted here since his

dissertationHI is available from University Microfilms (Ann Arbor, MI) and in the content

of forthcoming publications.
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B. Sounds Radiated by a Dyed Oil Drop in Water Illuminated by

Modulated Laser Light

In the experiments the drops had diameters L typically of about 3 mm and the laser

beam was much smaller in diameter. The drops were surrounded by a bath of clear water.

The power P(t) of the laser beam (green light) was modulated to produce either a single

pulse or a sequence of square pulses each of duration T separated from each other by a

dark interval of duration also of T. For cases where the sequence is long enough for the

sound to build up to the steady state response, P(t) could be taken to be a square-wave of

infinite duration which has the following Fourier series representation

P(t) = (Pc/2)[ I + (4/n)X n Isin(nox) (9)
n=1.3.5...

where P0 - 0.8 Watt was the peak optical power during the pulse, co = 2ntf, and f--

(2T)-1 is the fundamental modulation frequency.

During the past year Unger and Marston developed a semiquantitative

thermoacoustic theory for estimating the sound pressure level at a distance R >> L from

the drop. For the P(t) given by Eq. (9) the pressure is given by a series of harmonics

p(R,t) - (FP PoaLf/c pRx) cos[nco(t-R/c)], (10)
n=1.3...

where

= thermal expansion coefficient of the oil

C = specific heat capacity of the oil

c = sound speed in water

Ct = optical absorption coefficient of the dyed oil

PoaL = approximation for the optical power absorbed by the drop while the

beam is on (this assumes that aL << 1)

% %
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In one version of the model F = 1 while a second method of derivation (based on different

assumptions) gives F = (density of water)/(density of the oil) - 1.14. The data mentioned

below is in better agreement with the theory having F = 1. The termination of the series

after N harmonics reflects the finite bandwidth used in the experiment. In most cases the

bandpass filter was set such that only the n = 1 harmonic is recorded.

Figure 11 shows representative recorded output of the hydrophone for the case of a

single pulse of illumination (upper figure) and to a sequence of four pulses (lower figure).

In each case the fundamental frequency f = 150 kHz. The lower figure (together with

bandwidth considerations) suggests that four pulses were more than sufficient to bring

about a steady state response. The central question becomes "How well does the semi-

quantitative theory, Eq. (10), do in predicting the pressure peak-to-peak amplitude?" The

comparison yields an average value for the ratio

Pexperiment/Ptheory - 0.23, (11)

with F = 1 in Eq. (10). This result is an average for 14 drops with this ratio in the range

0.19 to 0.30 for most drops. Systematic sources of error capable of explaining the entire

discrepancy have yet to be identified. Consequently it appears that the present model

overestimates the radiated amplitude. It is important to note that several assumptions made

in the derivation of Eq. (10) are not strictly valid and to develop a more complete theory

would not be a trivial task. (The theory neglects drop resonances.) There may be a

reduction of the signal due to the method of supporting the drop. Also, some

experimentsHl clearly show that a nontherroacoustic mechanism can be present for drops.

A manuscript has been prepared which is descriptive of this work but it is not in its

final form as of the time of this writing.

a.
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Fig. 11. Records of acoustic signals radiated from a dyed oil drop in water. In the upper
curve the drop was illuminated by a single optical pulse while in the lower curve the

illumination was a burst of four pulses. The peak optical power was 0.8 W and the drop
diameter was 2.99 mm. Each pulse was of duration 0.5 (150 kHz)-i = .3 gsec.
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C. Optical Levitation of Bubbles in Water by the Radiation Pressure

of a Laser Beam: An Acoustically Quiet Levitator

Early in this effort optical levitation of bubbles was developed as a method for quiet

levitation of a bubble in water. Unfortunately, the technique was not used extensively for

photoacoustic experiments because of the failure of one of the Ar-Ion lasers. Nevertheless

the technique is novel and sufficient data was acquired to support a semiquantitative model

of its operation. Hence a manuscript descriptive of this work was completed and submitted

for publication.B3 This includes an improved derivation of the model.

D. Optically Stimulated Sound from Gas Bubbles in Water

This was the central topic of Unger's dissertation.H1 As noted in Section VC

above, the optical radiation pressure on a bubble can be sufficient to prevent a bubble from

floating up to the top surface in a tank of water. That same pressure should also squeeze

the bubble.3,G1 The radiation pressure is modulated along with the optical power of the

beam and in response to this modulated pressure the bubble is set into radial pulsations.

These pulsations in turn radiate sound. Representative records of the sound were shown in

a previous Annual Summary Report.3 Unlike the case of drops (Sec. VB) the radiation

from bubbles is dominated by the properties of the monopole resonance.3 For steady-state

measurements described below the modulation is a square wave described by Eq. (9) with

a fundamental frequency f. It has been shown that the steady-state pressure is maximized

when f corresponds to the frequency of the bubble's monopole resonance.

The principal new research carried out during the present contract period was as

followsHI: (i) an improved calculation of the radial projection of the radiation pressure for

the optical beam profile used. (ii) a check of certain aspects of the calibration procedure so

as to reduce systematic errors in the amplitudes measured in the experiment; (iii)

comparison of experimental and predicted acoustic pressure amplitudes for a wider range of

• .-..- ,:..,.-.,.,..-.,-..v~~v..-: .-.-.-. ..-.. '..-.,-..... : . : 2 . .: . . : .. :: .... :. ... ) . .. .... . % %. g
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parameters; and (iv) development of a novel way of plotting the amplitude data to test the

coupling mechanism.

For the purpose of the present discussion, attention will be restricted to items (iii)

and (iv) with initial discussion being of item (iv). In the experiments, the irradiance profile

for a beam was minimized on the beanm axis (a "doughnut" mode beam). This had the

effect of putting most of the beam power in the total reflection region of the bubble's

surface. The goal of the experiments to be described is to show how the acoustic pressure

radiated depends on a/w where a is the bubble radius and w is a parameter which

describes the effective radius of the beam. It is assumed in the calculation that w is fixed

while a is varied. For each value of a the modulation frequency f is adjusted to

correspond to the bubble's radius. The resulting estimate of the radiated pressure

(normalized to that of the maximum amplitude) is shown as the curve in Fig. 12. It turns

out that for a wide range of widths w, the predictions fall on the same curve (shown)

which is a function primarily of a/w. The reason for the reduction in pressure for large

values of a/w is that the bulk of the beam power is transmitted through the center of the

bubble and the intensity is low in the total reflection region (which lies near the region

where the local impact parameter of a ray is large). Consider now the data (the points)

where the various methods of supporting the bubble are indicated. The data have the

general shape of theory. What is most important is that observed ratio p/pma falls off

when a/w is large. This would not be the case if the mechanism were a thermoacoustic

mechanism which involved the periodic heating of gas within the bubble. When a/w is

large there is more light transmitted to the gas within the bubble. (Thie method of collecting

the data did not allow for direct measurement of w but w was infenred through the value

of a/w which maximized the acoustic signal. (See Ref. Hi.Q

T'hough Fig. 12 strongly supports that radiation pressure is the mechanism whereby

the radial pulsations of the bubble are driven, a significant puzzle remains. The measuredI



-Tr

40

1.2,
+ W

1.0

S0.8

0.4.
0.6

+ +

0.41

0.21

0.50 0.75 1.00 1.25 1.50 1.75

A/W FOR FIXED W

Fig. 12. Normalized acoustic pressure amplitude radiated by an illuminated bubble as a

function of the bubble radius-to-beam width ratio a/w for data sets each corresponding to a

fixed beam width w. The solid curve is from the optical radiation model for the excitation

of bubble oscillations. The vertical scale is adjusted so that all data sets correspond to the
model at the maximum (the black square). This plot appears to support modulated optical
radiation pressure as the mechanism for driving the bubble oscillations and the resulting

radiation of sound. The method of supporting the bubble is indicated by the symbol type.
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magnitude of the radiated sound wave typically exceeds the predicted magnitude by a factor

of 10. The prediction uses the same radiation pressure theory that gives the curve in Fig.

12. At present, the reason for this discrepancy is not known. It appears not to be a simple

matter of hydrophone calibration since the same calibration gave the results in Eq. (11) for

the pressure-radiated from drops.

VI. ACOUSTICAL AND OPTICAL DIFFRACTION CATASTROPHES

A. Motivation and Review

Diffraction catastrophes are a class of foci or caustics which occur in various

acoustical and optical problems. 1-3,Gl They are important for describing the wavefield

since purely geometrical propagation rules give unphysically divergent amplitudes at

caustics in the short wavelength limit. As noted below, the resolution of issues raised

during these optical scattering experiments has advanced the understanding of acoustical

diffraction catastrophes. A I A 2 G I The emphasis of the present research is on specific

caustic manifestations including the ways in which acoustic echoes merge at caustics. In

reflection experiments the merging of echoes provides a simple way of locating caustics.

In addition to contributions to specific areas mentioned below, it is noteworthy that

graduate students C. Dean and P. Amott have assisted with the computer graphics used

throughout the work on catastrophes.

B. Surface Shapes Giving Transverse Cusp Catastrophes in Acoustic

or Seismic Echoes, the Caustic Surface, and Optical Simulations

In the previous research 3,AI,GI the generic shape of wavefront was identified

which propagates to produce a transverse cusp caustic. l'4 During the present contract

period that analysis was extended so as to obtain the caustic parameters for transverse

cusps produced by the reflection of sound from smooth curved surfaces. The sound is

assumed to be initially radiated from a point source. A manuscript on this problemD1 is

!C..
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Fig. 13. The upper photograph shows one perspective of the optical reflection experiment
used to simulate acoustical transverse cusps. A beam diverges from the lens on the right so
as to reflect from the smooth curved surface on the left. The resulting transverse cusp
caustic is visible on the ground glass screen near the center of this photograph. In the
lower of the photographs the camera is positioned so as to view the glints from the
reflecting surface. This positioning of the camera is similar to that of Fig. 6 of Appendix I
except that here the aperture lies close to the caustic surface and two of the glints have

merged.
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included as Appendix I of the present report and the reader is referred to Figs. 2-5 of that

appendix for illustrations of the geometry. The parameters of the caustic surface for the

reflected rays are implicit in Eq. (20) of that appendix.

In addition to that analysis, Appendix I also describes a simple optical simulation of

transverse cusps produced by reflection. (This simulation was carried out with the

assistance of graduate students C. Frederickson and W. P. Amott.) Figure 13 of the

present report shows two photographs of the simulation. The upper photograph is an

overview of the apparatus. The laser and lens (visible on the right) produce a diverging

beam which simulates the point source. The screen displays the transverse cusp. The

simulation demonstrates that the transverse cusp and caustic surface have qualitative

features like those predicted. [For a detailed description, see Fig. 6 of Appendix I and the

sections titled "OPTICAL SIMULATION OF ACOUSTICAL TRANSVERSE CUSPS"

and "LOCATING CAUSTICS BY THE MERGING OF RAYS...".1 The lower

photograph of Fig. 13 shows how two rays to the camera's aperture (these correspond to

"glints" in the photograph) merge after that aperture has been moved upward to lie on the

qusp curve. (Compare with Fig. 6 of Appendix I and the section on "LOCATING

CAUSTICS. .. ".) The merging glints are visible in the upper part (of the lower

photograph) of Fig. 13.

C. Hyperbolic Umbilic Focal Sections: The Wavefields and the

Merging of Rays at Caustic Lines

In Sec. IVD of the previous Annual Summary Report,GI a new method for

obtaining wavefront parameters in scattering problems was described which was based on

Kneisly's method15 for tracing the local principal curvatures of wavefronts through an

optical system. This method was then applied to new results (Sec. IVC of that report)

relating the wavefront parameters to the caustic parameters for the hyperbolic umbilic focal

J * *V V
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section (h.u.f.s.). When applied to the specific case of the h.u.f.s. diffraction pattern seen

in light scattered from oblate water drops,9 ,16 the result for the apex angle between the

caustic lines was in good agreement with the observations.F3 The calculation was not

trivial because there are two (oblate) refracting surfaces and one (oblate) reflecting surface.

During the present contract period the calculation was carried to the next level of

sophistication: the wavefleld in the h.u.f.s. was calculated and compared to photographic

records9.16 of the diffraction pattern. The result shows good agreement between theory

and experiment without the use of any adjustable scaling parameters in the model (though

in the experiment the absolute scattering angle could not be measured though the increment

in scattering angle was measured).

The method of calculation is outlined as follows. The notation used is that for

acoustical diffraction catastrophes.A I Recall that Marston demonstrated that the general

shape function g(x,y) for the outgoing wavefront is of the formGt'2,F3F7

g(x,y) = [(ax + 37Y x)/6] + a(X+ + . (12)

where the parameters are such that CE and y are of the same sign and al :5 0 since the

.l

distance from the xy plane to the focal section is zf = (2al)-'. The basic geometry is

illustrated in Fig. 14. The angle 'V between the caustic lines isGI = 2 arctanl3 where P

WW (/) 1/2. The pressure in the exit plane is the real part ofAI

P(, )= e kg(x~y) e o, (13)

where k ufsc and the wave is of unit amplitude. The formulation of the diffraction

problem is like the one described in Ref. Al and Appendix I for the transverse cusp except

that the dimensionless diffraction integral F becomes

F wtutexp ik[ f(ax +a3y )l i pa t + emoedxd (14)
n 6cm

in satteing nglewas easued)

Themetodof alulaionisoutind a folos. henottio ued s hatfo

acoustical........................... ........ ll.hat.Ma..... de. onstrted.t..t.h..genera
shap fuctio g~~y) or he otgong wvefont s o .h fom p,2,'3F

g,.,...) = .............................. (12
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Fig. 14. Caustic surface for a hyperbolic umbilic diffraction catastrophe for the case where

the distance Zfs to the focal section (the uv plane) from the exact plane (the xy plane) is

finite. The shape function of the outgoing wavefront at the exit plane is given by Eqx. (12)

with al < 0 for the case shown.
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where here and below it is assumed that the observation plane is the focal section (z = zfs).

The diffracted pressure is the real part ofAI

k ik -ion
p(u,v,t) = T- F e (15)

Marston has evaluated (14) by carrying out a shearing of coordinates with the resultFI
1/3 4/3

_k" 2 ik i .

Ai(q 1)Ai(q 2), (16)ira2 _.

Ai(qj) cos( s3 + qjs)ds, (17)

0

k2/3
qJ/ k j = 1,2, (18)

(2a)1/3

where Ai(qj) is the standard Airy function for the real argument qj.

All of the above can be applied to the light scattering problem of an oblate drop

where p describes the dominant component of the electric field. To carry out this

application it was necessary to use certain of the previous results for the shape parameters

of the outgoing wavefrontG

m 18 (4-M2)1 2
2, = D2  2 (19)

r12D (rni

where D is the diameter of the drop in the equitorial plane and m = 1.332 is the refractive

index of the drop. Figure 15 superposes on the observed pattern a contour plot of a

function proportional to Ai(qi) Ai(q2), and hence to the field. The actual irradiance is

proportional to IAi(ql) Ai(q2) 2. The calculations and observations are for the far-field

(z- +) limit. The agreement is remarkable considering the nature of the experiment.
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Fig. 15. (on next page) Comparison of experiment and theory for the hyperbolic umbilic

focal section scattering pattern for light scattered from an oblate drop of water near the

angle of the rainbow. The photograph in the background is from the experiments described

in Refs. 9 and 16. The contour plot is of the function S = Ai(qj) Ai(q2) where qj and

q2 are given by Eq. (18) and Ai is the Airy function. The solid contours are for regions

where S > 0 while the dashed contours are for regions where S < 0. The irradiance

should be proportional to S2 . The agreement between theory and experiment for regions

of high irradiance is noteworthy considering the experimental difficulties in determining an

accurate drop diameter D and because of the complexity of the theory. The light is

*' refracted or reflected by three curved surfaces before leaving the drop. This complicates

the calculation of the apex angle W and made it necessary to use the method of wavefront

tracing introduced in the previous Annual Summary Report.

.
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One of the difficulties in understanding the h.u.f.s. is to explain the way in which

the rays merge as the observation point (u,v) in Fig. 14 crosses the caustic lines in the focal

section (at fixed z = zfs). As (u,v) crosses these lines the number of rays must drop

from16 4 to 0. It is reasonable to ask "How do these rays merge and disappear?" This

problem was solved by applying a method previously introduced by Marston in Sec. II of

Ref. A l for the case of transverse cusps.F7

D. Applications to the Theory of Shock Wave Focusing

Some applications of catastrophe theory to the theory of focused shock waves were

considered.D2 The starting point was to apply catastrophe theory concepts to describe the

caustic surfaces for intrinsically three-dimensional linear waves. (The two-dimensional

problem of a weakly-focused converging cylindrical wave was reviewed in Ref. D2 and in

Fig. 1 of Appendix I.) In this case the caustic is a longitudinal cusp (an arete). The

analysis for the linear problem faci!'tated the connection of the shape parameters for the

outgoing wavefront with the classification of the caustic surface and the description of the

parameters which characterize the caustic surface.

The connection between these linear propagation problems and the focusing of real

shock waves (in gases or in liquids) may be seen as follows. It is appropriate to first make

note of experiments 17 and recent computations 18 of the focal properties of cylindrical

nonlinear shock for a cylindrical bulge as illustrated in Fig. I of Appendix I for the linear

case. Nonlinear effects tend to defocus rays which would otherwise form the arete. As the

concave forward portion of the wave strengthens, it speeds up so as to reduce the bulge.

Hence rays are not straight as assumed for acoustic shocks. Experiments 17 and

computations 18 show, however, that real cylindrical shocks can become unstable with

respect to the formation of a pair of shock-shocks in the focal region; a Mach-stem-like

section connects these shock-shocks. Evidently, the rate at which a bulge is reduced is not
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always rapid enough to prevent Mach intersection of the obliquely convergent shocks in the

focal region. The important point here is that nonlinear effects become important in the

focal region and the way they are manifested is not trivial to predict.

The simplest of the three-dimensional linear focusing problems considered was the

transverse cusp caustic surface as illustrated in Fig. 5 of Appendix I. If, instead of linear

shock wave propagation, the wave is taken to be a nonlinear shock wave having the same

initial shape, it is clear that the effects of the nonlinearities must become important in the

focal region. The way these will be manifested is not presently clear. For example, the

converging wave could become unstable with respect to the formation of shock-shocks.

E. Calculation of the Principal Curvatures of Wavefronts and Their

Applications to Transverse Cusp Diffraction Catastrophes (C.

Dean and W. P. Arnott)

In the usual formulation of catastrophe optics10,19 the principal curvatures KI and

K2 of a wavefront and the associated Gaussian curvature Kg = KIK2 are approximated

with the aid of a paraxial assumption where the local slope of the wavefront is taken to be

small. On the other hand, Kneisly's method 15 of tracing the wavefront does not require the

use of a paraxial assumption. It appeared desirable to obtain general expressions for KI,

K2, and Kg from equations for the wavefront (or other surface shape) in cartesian or polar

coordinates for points on the surface. Oddly enough the required general expressions

could not be found even after consulting several texts and reference books on classical

differential geometry. Consequently C. Dean and W. P. Arnott obtained novel general

expressions for KI, K2, and Kg which do not make use of a paraxial assumption. These

expressions were tested against several standard cases and found to give exact results. A

manuscript descriptive of this calculation is in preparation.

%
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Recall from Sec. VIC and from the previous Annual Summary R=O0 l that the

shape parameters for the case of the hyperbolic umbilic wavefront were found and related

to the caustic parameters. (For the hyperbolic umbilic the shape parameters ar the a and

y of Eq. (12).) C. Dean has been working on a similar calculation which would enable the

calculation of the shape parameters from the principal curvatumres Kl and K2 for those

wavefrontsA 1JDI J ) 2 which give transverse cusp caustics. Here the eventual goal is to find

the opening rate for the caustic from surface properties of the reflecting or refracting

system. A special case of this problem was solved by Marston for the reflection geometry

shown in Fig. 4 of Appendix I. (There the opening rate is proportional to the multiplicative

factor on the left side of Eq. (20) of Appendix I.) A specific (and more difficult) problem

considered by C. Dean is the calculation of the opening rate for the transverse cusp caustics

observed in the scattering from spheroidal drops of water.9 This calculation is to be

checked against existing data.

Once the caustic parameters and wavelength is known for a transverse cusp

diffraction catastrophe, the wavefield may be expressed using the Pearcey function

P(X,Y) = f exp[i(s4 + s 2 X + sY)]ds. (20)

Computer algorithms to evaluate this function are not widely available. One of C. Dean's

current tasks is to adapt an algorithm kindly supplied to us by Professor F. J. Wright20

(University f London) to allow P(X,Y) to be computed here at W.S.U. This is needed

to compute the diffraction pattern in the light scattering experiments and the steady-state

wavefield in the acoustic reflection experiments described in the next section.

:9Sv
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F. Experiments with Acoustical Transverse Cusps Produced by

Reflection from Smooth Surfaces (C. K. Frederickson)

During the period May 15, 1987 - August 15, 1987 a graduate student, C.

Frederickson, began experiments on acoustical transverse cuspsA 1 produced by reflection.

Frederickson is to resume experiments in January 1988 as he works toward the completion

of a M.S. degree in physics; hence only a brief summary of the present results will be

given here. The goal is to demonstrate experimentally various properties of steady-state

and transient wavefields near transverse cusp caustics, some of which are predicted in Ref.

A 1 as well as Appendix I and Sec. VIB of the present report.

The first task was to set up a new water tank facility with sides spaced farther apart

than for the existing 300 gallon tank. This tank was needed to reduce the problem of

spurious wall echoes both for the catastrophe experiments and the phase conjugation

experiments discussed in Sec. VII. Figure 16 shows the new tank which was made by

cutting the top off of a 550 gallon cylindrical polyethylene tank manufactured for the

storage of agricultural liquids.2 ' After removal of the top the capacity is 500 gallons, with

a diameter and typical liquid depth of 168 cm and 83 cm, respectively.

Figure 16 also shows a smooth curved acoustic reflector immersed in the tank. The

reflecting surface is a thin air-backed polished metal sheet supported by a sealed lucite

frame. The design is similar to that of the optical reflector shown in Fig. 13 and Appendix

I, Fig. 6. For this reflector the surface height function, Eq. (15) of Appendix I, reduces

approximately to the following form
2 -2

h(x,y) - c2y x, c2  -0.0008 cm , (21)

In the section on "TRANSVERSE CUSPS PRODUCED BY THE REFLECTION FROM

SMOOTH CURVED SURFACES," it is shown that sound radiated from a point source

which reflects from such a surface, should produce a transverse cusp caustic described by

We
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Fig. 16. Photograph of the new tank facility. The rail supports shown have the same
spacing as for the old facility so that various hydrophone mounts or target holders may be
transferred back and forth between tanks.
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Eq. (20) of Appendix I. Though the form of the wavefield is calculated there for the case

of a steady-state sine wave, the present experiments were concerned only with merging of

transient echoes as discussed in the section "LOCATING CAUSTICS BY THE

MERGING OF RAYS AND OF PULSED ACOUSTIC ECHOES," in Appendix I. Since

that section outlines the theory, the discussion below will summarize only the present status

of the experiments.

The geometry of the experiment is as shown in Fig. 4 of Appendix I where the

source is located at an effective distance zs = 105 cm from the reflector such that the

transverse coordinates are Us = 0, Vs = 0. The diverging wave is radiated from a curved

piezoelectric transducer driven by a single cycle of a 2.5 MHz sine wave. The receiver

hydrophone was scanned in a plane at a distance z = 80 cm from the reflector. For the

time records to be discussed, Fig. 17 illustrates the receiver locations relative to the inferred

position of the cusp caustic. The hydrophone was scanned vertically along the line shown

and the records of the hydrophone output are as shown in Fig. 18. Each record was

triggered at the same time relative to the emission of the sound from the source. Records

(a) and (e) were taken deep in the one-ray region of the reflection. In each case only a

single echo, labeled (1), is clearly displayed. Record (c) is for the hydrophone located

within the cusp in the three-ray region. Since the position is shifted from the symmetry

axis of the cusp, none of the echoes should have the same arrival time and this is evidenced

by the broad signal labeled (1) + (2) + (3). Unfortunately the time resolution is insufficient

to resolve three distinct echoes. The late echo in (c) is evidently due to scattering from an

edge of the reflector. In record (d) the hydrophone has been lowered to lie close to (or on)

the cusp curve. Two of the echoes have merged to produce the large echo labeled (2 + 3)

which clearly arrives earlier and distinct from the smaller echo labeled (1). A similar
'vs

merging is shown in record (b) which is for the hydrophone located on or near the upper

cusp curve.
;.

.5,.
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Fig. 17. (on next page) Position of the hydrophone relative to the apparent cusp curve
position for the records shown in Fig. 18. The position labeled (A) gives the record in Fig.
18(a), (B) gives the record in Fig. 18(b), etc. The hydrophone outputs recorded in Fig. 18
are shown having a fixed voltage amplification factor.
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Continuous transitions were observed in the records as the hydrophone was moved

along the paths (b) to (a) and (d) to (e). In each case the echo labeled (1) was continuously

visible but had a gradual reduction in amplitude. The arrival time increased monotonically

with the apparent distance from the symmetry axis from the cusp as is to be expected from

the theory. The echo labeled (2 + 3) remained distinct from echo (1) and undergoes a much

larger reduction in its amplitude such that it can be no longer seen for hydrophone positions

(a) and (e). This behavior is also consistent with the theory as the receiver is shifted to lie

deep within the one-ray region.

Additional features observed are in qualitative agreement with the theory. For the

distance parameters zs and z of this experiment and the estimated value of c2 in Eq.

(21), application of Eq. (20) of Appendix I predicts that the cusp point should lie about 7

cm to the left of the scanned line shown in Fig. 17. The hydrophone was moved at (or

close to) the predicted cusp point location and in agreement with expectations the dominant

feature of the output was a large-single-echo. In addition, application of Eq. (23) of

Appendix I gives the following prediction for the relative arrival times when the receiver is

located at positions (b) and (d) which are assumed to lie on the cusp curve. The prediction

is that echo (1) should be delayed relative to echo (2 + 3) by 3.7 .ts. The apparent

observed delay was 2.3 is which suggests that either this preliminary demonstration of

locating the caustic contained errors (in the inferred position of the caustic) or that the

parameter c was not known to sufficient accuracy.

It should be noted that experiments had been previously carried out by Hilterman 22

which illustrated the merging of reflection echoes at a longitudinal cusp caustic. Those

experiments were carried out for propagation in air for sound produced by a spark source.

Figuvt 1 of Appendix I, shows the geometry of merging rays for the longitudinal cusp.

This is essentially different (and simpler than) the case of a transverse cusp since the rays

for the longitudinal cusp are confined to lie in a plane.

" - -... d. . . . ..- C --
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To facilitate the experiment described in Fig. 17 and 18, Frederickson modified an

analog x-y recorder so that it could be used to give a two-dimensional scan of the

hydrophone.

Frederickson carried out experiments intended to be useful for the imaging of the

* steady-state wavefleld near the cusp. The basic idea is that a sheet of paper is immersed in

* dyed water and subjected to a high frequency sound field. The dye (methylene blue) is

most rapidly absorbed by the paper in regions where the sound field is the most intense.23

Hence, if the paper is removed from water, it should be left with a dye pattern which

"images" the sound field. By placing a sheet in front of a transducer designed to give a line

focus, Frederickson observed that a blurred line image appeared on the paper.

* Unfortunately the tests seem to indicate the contrast in the image is not sufficient for the
* present application of imaging diffraction catastrophes; however, a broad range of

parameters were not explored.

VII. ACOUSTICAL PHASE CONJUGATION

A. Review and Theory Development

In Sec. VII of the previous Annual Summary Report,GlI various mechanisms for

producing acoustical phase conjugating minrors (PCM) are discussed. A PCM is a mirror

which reverses the outgoing wavefront so that it propagates back toward the source. The

experiments under way here at the time of this writing make use of a form of bubble layer

(see the next subsection) for the nonlinear medium where the interaction occurs. H-ence the
* present theoretical discussion will consider only recent developments related to that

mechanism.

Before discussing the present status of the experiments it is appropriate to review

the problem of the focal-point shift for the reversed wave introduced by Marston in the

previous Annual Summary Report. The geometry to be considered here is illustrated in

kI
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Fig. 19. A thin layer of bubbles is confined to a plane at z = 0 and it is in this plane where

the nonlinear interaction of pump (1), probe (2), and reversed wave (3) takes place. The

pump and probe waves are taken to diverge from points at distances zI and z2 from the

bubble layer. The following analysis was motivated by the publication of Soviet

experiments, 24 claiming to detect a reversed wave, but making no mention of the problem

of the focal point shift. If fj and f2 denote the frequencies of the pump and probe

waves, the frequency of the reversed wave for the class of nonlinear interaction considered

(three-wave mixing) is

f3 = f1 -f 2. (22)

In the published experiments, 24 fI = 100 kHz, f2 = 60 kHz, and f3 - 40 kHz where

evidently the choice of f3 * f2 was made so as to discriminate experimentally between the

probe and reversed wave signals.

The basic problem is to calculate the distance z3 from the bubble layer to which the

reversed wave appears to converge. For simplicity we shall restrict our analysis to the case

where the pump and probe waves diverge from points which lie on the z axis which is

perpendicular to the layer. Figure 19 shows rays from these sources to a given point on the

layer which is displaced a distance x from the z axis. Associated with these sources and

the ray to the focal point (3) are wave vectors "Vj, j = 1, 2, and 3, which have the

following magnitudes kj = 2Wf/c where c is the sound speed in the surrounding media

(water). Any shift of the sound speed due to the presence of bubbles is neglected. If there

is to be an efficient interaction of the pump, probe, and reversed waves in the layer, the

following condition must be imposed on the :j, irrespective of the local value of x

x (-k) = x (kk 2 ), (23)

Awhere x is a unit vector. This becomes

S .... . ,- - - - - - -- . - .
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Fig. 19. Geometry considered for a reversed wave (3) which results from the nonlinear
interaction of pump (1) and probe (2) waves at a layer by bubbles in the plane z = 0.

....... ....... .
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-k3 sin0 3 = k, sine 1 - k2 sin0 2, (24)

where the Oj are the angles relative to the z axis as shown in Fig. 19. In the analysis

which follows it is convenient to make a arial a which assumes that the Oj

are sufficiently small that (x/zj) = tanOj - sin0j. Then the quantity x may be canceled

from both sides of Eq. (24) so that the focal distance z3 becomes

Z3 - f[(f 2/z 2) - (fl/zl)], (25)

which does not depend on the local transverse location x of the interaction region. For the

special case of a plane wave pump beam, z1 -+ 9o, so that Eq. (25) becomes 25'G1

Z3 - (f3/f 2)z2. (26)

When z3 0 z2, it is appropriate to say that the focal point has been shifted from the source

location of the probe wave. Notice that from Eq. (25), even when the reversed wave is

taken to have the same frequency as the probe (f3 
= f2 = f1/2), that z3 - z2/[1 - (2z2/zI)] *

Z2 unless z1/z2 -+ -. This "focal point shift" is the simplest form of aberration present

for the acoustical phase conjugation mechanism considered.

It is noteworthy that a more recent description and analysis of the Soviet

experiments just appeared. 26 This mentions what Marston calls a "focal point shift" and

gives an equation which is equivalent to Eq. (25) in the paraxial assumption. The

presentation of the data is not sufficiently clear as to say whether a shift was present in

what appears to be a reversed wave.

B. Experimental Study of a Reversed Wave (Kargl)

Following the completion in July 1987 of his M.S. degree projectH2 on acoustical

scattering (see Sec. MfC), Kargl began an experimental study of the reversed wave. The

discussion of the present results will be brief since they are necessarily preliminary. This

presentation is merited because of the observation of a difference-frequency wave.

.., .. ;,. ..:.
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Furthermore, the discussion is indicative of the present experimental capabilities and the

directions to be taken in future research. It should be noted that other mechanisms for

generating a reversed wave l,G I are to be examined with this apparatus. The experiments
a.

are carried out in the new 500 gallon tank shown in Fig. 16 set up by Kargl and

Frederickson.

The bubble layer in these experiments consisted of a sheet of Nuclepore 27 filter.

This sheet consists of a polycarbonate membrane with uniformly distributed pores running

through the membrane. The pore size is sharply defined by the manufacturing process to

have a diameter of 10 gm. The manufacturer was to have treated the membrane to make it

hydrophobic so the pores will contain a stable gas-filled cavity or microbubble when the

sheet is placed in water. Miller 28 demonstrated that similar sheets exhibit a significant

nonlinear response to ultrasound though it appears that the generation of sound at the

difference frequency was not previously studied. Because the number density of pores

may be quite large (according to the manufacturer 105 pores/cm 2) it would seem that the

associated trapped microbubbles should exhibit the nonlinear response required to mix the

signal wave (frequency f2) with the pump wave (frequency fl) so as to produce the

conjugate wave at frequency f3 = fI - f2. One of the major advantages of this sheet is that

it should give a steady population of microbubbles which are sufficiently small that high

frequencies (fj - 1 MHz) can be used. It is important that the population not fluctuate

greatly with time so that background subtraction procedures noted below could be used.

The dimensions of the sheet were 20.3 cm x 25.4 cm and the filter was supported at its

edges by a thin plastic frame.

Figure 20 is a diagram of the main features of the experiment. The acoustical

components (source transducers S I and S2 , needle hydrophone R3, and Nuclepore filter)

are not drawn to scale. Power amplifiers Al and A2 amplify sine wave bursts of

frequency fI and f2 so as to drive S I and S2. The diameter of S I is relatively large

*...*a . %. _ -. a= - .='= .,r . a... .P
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(1.5 inches); however, the Nuclepore sheet is in the far field of Si so that the pump wave

appears to spread from a distance z1 < 120 cm. The burst radiated by the probe source S2

is delayed so that the pump and probe bursts overlap in time at the center of the sheet as

well as on most of the peripheral region pump beam at the sheet. The bursts must be

sufficiently short that the hydrophone R3 and preamplifier A3 have fully recovered from

the outgoing bursts. They should be sufficiently long for the fI and f2 bursts to interact

at the filter over different regions in such a way that: (i) the microbubbles in the filter have

time to build up to a steady-state nonlinear response; and (ii) the resulting difference

frequency waves radiated from different regions of the filter can arrive at R3 at the same

time.

The output of the preamplifier can also be monitored with an analog oscilloscope

(not shown in Fig. 20). Direct inspection of this signal during the time window anticipated

for the reversed wave shows that appreciable signals are backscattered to R3 at

frequencies fI and f2. Fortunately these signals do not appear to be so large as to drive

A3 into a region of nonlinear response and intermodulation distortion. It is necessary,

however, to reduce the amplitudes of these (linear scattering) signals so as to avoid

overdriving the digitizer on the digital signal processor so as to be able to pick out the

difference frequency f3 signal which is lower in amplitude. The analog bandpass filter is

set to pass the region from fA to fB and to attenuate signals with frequencies < fA and >

fB. This filter achieves the required reduction in amplitude by setting f3 < fB < f2 < fI and

fA <<f 3.

Figure 21 shows signals recorded by the digital signal processor (DSP) for the

conditions noted below. The duration of each record is 28.2 pts. The time window

recorded was the same for each trace. The trigger delay in the DSP was adjusted so that the

time window recorded would include signals radiated from the interaction region of the

Nuclepore sheet. The pump wave was a sine wave burst of frequency fl = 2.0 MHz and

-A.
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duration -Ti = 60 p~s. The probe wave had a frequency f2 = 1.2 MHz and duration -r2

30 pis. The resulting voltage recorded, to be denoted as V 12 for reasons evident in the

discussion below, is actually an average of 512 records obtained under identical conditions.

An FFT of this record shows that while there isa significant peak at f3 -fj -f2 =0.8

M&z, the principal spectral components of V12 are at fj and f2.

To enhance the visibility of the signal at f3 the following background subtraction

procedure was introduced. It was desired to subtract from V12 those signals associated

with the linear scattering of the pump and probe waves which had leake tough the

bandpass filter. The following voltage records were obtained by averaging 312 records

under conditions which are the same as stated above except as noted: for record V1 only

the pump transducer S I was driven while for record V2 only the probe transducer S2

was drive. These records are shown in Fig. 21 with the same vertical scale as shown for

record V12. Then the record denoted as V3 was calculated as follows:

V3 = 12 - (VI+ V2) (27)

and the resulting record is displayed in Fig. 21 with an expanded vertical scale.

Figure 22 shows the magnitude of the FFT of V3. The frequency locations of the

principal peaks are identified. The principal spectral component of V3 is a signal at the

difference frequency f3. This signal is clearly evident by visual inspection of Fig. 2 1.

The basic assumptions of the background subtraction procedure are that: (i) the

signals recorded at frequencies f1I and f2 principally come from the linear scattering by

the sheet; (Hi) there is no significant depletion of these signals due to the interaction of theI

pump and probe when both are present; and (iii) the propagation related phase delays are

truly unchanged during the recording of all three records V12, V1, and V2. If these were

exactly true, it is to be anticipated that the spectral components in V3 at the frequencies f1 I

and f2 would be at the same level as the noise. That this is not the case may be a
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consequence of small displacements of the sheet relative to the transducers. It is anticipated

that such displacements will be eliminated with improved mounts though at present such

motion may be demonstrated by setting up water waves in the tank. The general success of

the background subtraction procedure is evident by considering <Vj>, the peak-to-peak

amplitude for typical oscillations in each Vi. For j = 1, 2, and 3 these <Vj> are roughly

K 100 mV, 400 mV, and 60 mV. Inspection of Fig. 22 shows that the contributions to

<V 3> from signals at frequencies f I and f2 are down by a factor of 6 to roughly 10 mV.

It should be noted that a 60 mV signal at f3 could not have been caused by a quantization

* error of the digitizer since the voltage steps of the digitizer is - I mV. Calibration to

determine the absolute signal magnitude is not presently available.

As of the time of this writing we have not yet been able to explore a range of

parameters (such as f I, f2, tj, and t2 and the position of RD) so as to optimize the

magnitude of signal at f3. Records with f~ 2.0 M1-z but with f2 = 1.4 MHz gave

signals at f3 = 0.6 MHz of the same magnitude. The sheet is asserted to be a few pLrm in

thickness so as to contain bubbles having a spread of resonance frequencies 28 in this range.

In these experiments the probe wave appears to diverge from a "point" at a distance

Z =24 cm from the screen. If the pump wave were a plane wave, Eq. (26) predicts the

focal point of the reversed wave would be shifted by a distance (z2 - z3) =8 cm closer to

the screen for the records in Fig. 2 1. In this case the reversed wave would spread out into

a larger fan (than the probe wave) so as to directly intersect R3. TIhe real pump wave has

some curvature which, from the form of Eq. (25), should shift the focus back towards S2

and reduce the size of the fan. In these experiments the effective source location from the

probe wave was offset 10 cm from the axis of the pump beam. It may be advantageous to

reduce this offset so that the accuracy of the paraxial approximation, used in the derivation

of Eq. (25), is improved.

...........................................-.
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In the research of Kustov et al.2 26 the receiver hydrophone was moved to various

positions. The dependence of amplitude on position was used to support the claim that the

difference frequency wave formed a converging beam. It may be argued however, that a

better test for wavefront reversal is to monitor how the phase of the difference frequency

signal varies with position. 29 Such tests are planned. Additional tests such as these are

needed before we can claim to have seen wavefront reversaL

-.
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APPENDIX I OF ANNUAL SUMARY REPORT

SUFACZ SHRANS GIVING TRANSVERSZE CUSP CATASTROPHES

IN ACOUSTIC OR SEISMIC ECHOES

Philip L. Marston

Department of Physics
Washington State University
Pullman, WA 99164-2814

INTRODUCTION

The reflection of sound from curved surfaces can give rise to cusp
caustics. This paper discusses the theory for locating the cusps and
describes the associated wavefields. The emphasis is on cases where a
cusp caustic opens up roughly transverse to the direction of propagation
of the reflected wave. The present work extends a previous discussion of
such transverse cusps1 to allow for a wide range of point source and
receiver locations. The concepts of the caustic surface and the
coalescence of adjacent rays and echoes will also be discussed.

During the past decade, considerable advances were made in the
classification of caustics or foci in wavefields. These advances grew out
of the application of the mathematical theory of the singularities of
differential maps (sometimes known as "catastrophe theory") to the
specific mappings which describe rays. The relevant mapping becomes
singular where rays coalesce at caustics and the amplitude of the
wavefield is large near caustics. 2' 3 This application of catastrophe
theory is often known as "catastrophe optics". Examples of nontrivial
caustics can easily be demonstrated in the reflection or refraction of
light at smooth surfaces as illustrated by Fig. 6 of the present paper.
The diffraction patterns associated with such caustics are often described
as "diffraction catastrophes" and the effects of diffraction are essential
in determining the local amplitude. Catastrophe optics has recently been
applied to various problems in the far-field scattering of light from
drops of water4,5 as well as to the fluctuations or twinkling of the
intensity associated with random caustics 2,3.

The methods of catastrophe optics have been applied to various
problems in acoustic 1,6 and seismic7 ,$ reflection and propagation.
Information concerning the location and classification of caustics is
useful for reconstructing the local shape of a reflecting surface. The
emphasis of the present paper is not to solve a class of inverse problems
but rather to clarify certain geometric attributes of cusp caustics
associated with reflection. The coalescence and disappearing of rays or
glints as an aperture of an imaging system is scanned across a transverse
cusp curve is also explained. Applications include the reflection of

*. sound underwater from curved smooth surfaces, sensing of smooth surfaces
with airborne ultrasound, and seismic remote sensing.

LONGITUDINAL AND TRANSVERSE CUSP CAUSTICS

To explain the nature of transverse cusps it is appropriate to review
the better known case of a longitudinal cusp caustic, or "arite",



which opens up roughly along the direction of propagation
3
,
9. Figure 1

shows how a curved cylindrical wavefront propagates to produce such a

cusp. When point P is chosen (as shown) to lie within the cusp there are

three rays (labeled A, B, and C) from points on the initial wavefront to

P. As P is shifted down to lie on the adjacent cusp curve, rays A and B
merge; if P is shifted to lie outside the cusp there is only one ray to P
(ray C for P below the cusp.) If instead of the wavefront shown, we had
considered the case of a wavefront corresponding to a sector of a perfect
circular cylinder, there would be a perfect line focus at the center of
the wavefront. It is therefore common to refer to the cusp focus or
caustic, produced by the more typical cylindrical wavefront, as being a
consequence of cylindrical aberration.1 0 The wavefield near the cusped
focus of a cylindrically aberrated wavefront is expressible for
monochromatic waves in terms of a one-dimensional diffraction integral;

the integral may be expressed in terms of a special function known as the
Pearcey function,1 0 defined below in Eq. (11).

In contrast to the longitudinal cusp, the transverse cusp caustic
opens up roughly transverse to the propagation direction of the wavefront.
The relevant geometry is illustrated in Fig. 2. It is supposed that a

wave propagates from the exit plane so as to produce a transverse cusp and
that the local normals of the initial wavefront are nearly parallel to the
z axis. The (u,v) observation plane is taken to be perpendicular to the z I
axis. In that plane the caustic lies on a cubic cusp curve of the form

D(u - Uc) 3 - V2 , (1)

where the parameters D and uc may depend on the distance z from exit
plane to the uv plane and uc is the u coordinate of the cusp point (which
is taken to lie on the u axis).

Evidence for the existence of optical transverse cusps from light
scattering experiments 4

,
5 is reviewed in Ref. 1. Diffraction patterns

were observed at large optical distances from water drops in planes
perpendicular to the propagation direction of the outgoing light wave.
These patterns were observed for oblate drops near the scattering angle of
the primary rainbow. For a range of drop shapes, a portion of the
diffraction pattern was clearly that of a cusp diffraction catastrophe
(which is known to be describable by the Pearcey function. 2) The
conditions of the experiment indicate that a transverse cusp caustic can
be established which retains its form even for observation planes
infinitely distant from the drop.

GENERIC SHAPE FOR A WAVEFRONT WHICH PROPAGATES TO PRODUCE
TRANS "ERSE CUSPS

This section reviews pertinent results of a two-dimensional
propagation problem giving transverse cusps in the near and far fields of
the outgoing wave. The connection with other results of catastrophe theory
will be noted. For the purposes of relating the shape of the outgoing
wavefront to the location of the caustics, it is convenient to consider a
monochromatic wave. In the exit plane (see Fig. 2), the pressure is given
by the real part of p(x,y)exp(-iwt) where p(x,y) - f(x,y) exp(ikg(x,y)], k
- w/c>O, and c is the phase velocity which is assumed to be uniform
throughout the region z > 0. Caustic locations which result from this
analysis apply also to the problem of a pulsed wave having the same shape
of wavefront, as specified by the slowly varying function g(x,y). The
analysis can also be used to anticipate caustics in certain situations
where the medium is inhomogeneous. Let R denote the distance between
representative points having coordinates (x,y) and (u,v) in the exit and
observation planes respectively. The Fresnel approximation of the phase
shift due to propagation between these points is

"--%
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r+ (2 2 -kU V) k(x 2 *y 2 ) 7

kR kz I + (U2 + V2 )  kx y 2z (2)

where U - u/z and V - v/z are dimensionless. The Rayleigh-Sommerfeld

formulation of scalar diffraction theory reduces to the following

approximation for the complex pressure in 
the (u,v) plane

i

p(u,v) - k f (X-0, y-0)e i kr  F (u,v), (3)

2X2 2

F e, kd(UiVx Y) xdy, - g (x,y) - (xU + yV) + (x + Y 2

2z

where the amplitude f(x,y) of the wave in the exit plane can be assumed to

be sufficiently slowly varying that it may be well approximated by f

evaluated at the origin 0 of the exit plane. In (3), r denotes the

distance from 0 to (u,v,z) so that the first term in (2) has been approx-

imated as kr. The phase ko of the integrand in (4) is stationary where

d/ax- 0 and d/ay - 0. (6a,b)

If F is approximated using the method of stationary phase, the resulting

approximation is equivalent to geometrical optics and gives F - JHiI1 /2

where H is the Hessian
2

H ~L "- (7)
2 2 aaax 0y

evaluated for a given (u,v) at the (x,y) which makes (6a) and (6b) true.
The method fails at, and near, (u,v) for which H - 0. The locus of points
giving H - 0 define a caustic in the (u,v) plane.

The following choice for g(x,y) yields a transverse cusp specified by

(1) with the caustic parameters u, and D noted below
1

g(x,y) - aJx 2 + a2y
2x + a 3y

2 , (8)

u,(z) - - 2zblb 3/a2, D(z) - 4a2/27b 1
2z, (9,10)

where bi - a: + (2z)-: * 0 and b3 - a3 + (2z)- . The conditions on the

constants a4 are that a2 * 0 and that -(2a,) -  z for the selected
observation plane. Since the parameter a3 affects only the location uc of

the cusp point, the choice a3 - 0 is allowed. Figure 2 illustrates the
cusp's orientation for a ca-=e with a2 > 0 and uc < 0. Figure 3 shows a

plot of (-g) for representative parameters. In the paraxial approximation
the wavefront near the exit plane is advanced along the z direction by a

distance -(-g) relative to the exit plane!. Hence Fig. 3 illustrates the
local shape of an outgoing wavefront which propagates to produce a
transverse cusp.

For g specified by (8), the diffraction integral F(u,v) may be

expressed using the generalized Pearcey function

Pt(X,Y) - exp[±ils + 3 X + sY)lds, 11)

where X and Y are the flowing real-valued linear functions of U and V

X - (k/lb1 ) 1\2(Uc-U)sgn(a 2), Y - k3/4  b J/4 12/a 2 11/ 2V sgn (b1 ) (12)

Uc - uc/z, and sqn(a 2) - 1 if a2 > 0 while sgn(a 2) - -1 if a2 < 0. The
analysis gives
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F - (/kibl)I 1/2 e(-ix/4) exp(-ikU
2 /4b,) J(U,V), (13) 78

J - (Ib.i/k) -14 12/a 2 I1/2pt(X,Y) (14)

where the upper (lower) sign is used if bj< 0 (bi > 0); iP-(X,Y) I -
iP+(X,Y) I so that IFl and the modulus of the diffracted wavefield which

decorates the cusp may be obtained from plots"i of IP.1 irrespective of

the sign of bl. At the cusp point X - 0, Y - 0 so that iplkik/4 and the

amplitude diverges in the geometric Optics limit, k-+-.

Discussion of Eq. (8) and relevant results of catastrophe theory is
appropriate. For the elementary diffraction catastrophes, the form of the
rapidly oscillating integrand of the canonical diffraction integrals is
known as a consequence of Thom's theorem.2 6 ,7 Unfortunately the shape of
the wavefront which propagates to produce a given class of diffraction
catastrophe is only specified up to smooth coordinate transformation and
the construction of the transformation may not be a trivial task. For the
case of a cusp diffraction catastrophe, it is well known that the Pearcey
function is the appropriate integral so that for problems in which the
diffraction integral is trivially one-dimensional, the shape of the
required wavefront follows immediately by inspection of the form of the
integrand of (11). For the transverse cusp diffraction catastrophe,
reduction of the relevant diffraction integral to a one-dimensional
integral is not as trivial so that the salient result of Ref. 1 is that
g(x,y) given by (8) is an appropriate two-dimensional (and non-
cylindrical) shape. The actual wavefront shape which propagates to
produce a transverse cusp is only specified by (8) up to a locally smooth
transformation. For example, addition of linear terms &4X + a5y to the
right-hand side of (8) also yields a cubic cusp for the caustic with the
cusp point shifted; the analysis given here is applicable with U - (u/z)
- a4 and V - (v/z) -a5. It may be argued that the form of (8) is
consistent with various results of singularity theory and group theory.

TRANSVERSE CUSPS PRODUCED BY REFLECTION FROM SMOOTH CURVED SURFACES

Before considering the case of reflection of a wave radiated by a
point source, it is appropriate to review results from Ref. 1 for the case
of monochromatic plane waves incident on a surface whose height, relative
to the xy plane, is

h(x,y) - clx 2 + c2y
2x + c3y 2 + C4x + c5y, (15)

with c2*0. Throughout this section the amplitude reflection coefficient

of the surface is assumed to be such a slowly varying function of the
local angle of incidence that it may be well approximated as a constant.
Consider first the case where a plane wave of amplitude Po is directed
vertically downward onto the surface. In the paraxial and Kirchhoff
approximations, the reflected wave is equivalent to an upward directed
wave in the exit plane having an amplitude Po 4 exp[ikg(x,y)] where
g - -2h(x,y) . Hence the analysis given in the previous section applies
with a4 - -2c,, j - 1 - 5, and the reflection will produce transverse
cusps. In the case where the plane wave is directed downward at a small
angle relative to the vertical, the approximations a4 - -2c4, and a5 a -2c
need to be altered. Transverse cusps can also be produced by reflection
from surfaces generated by smooth coordinate transformations of the form
given in Eq. (15). This also applies to the case of a point source
considered below.

The cusps and wavefields associated with reflection of a wave from a
point source will now be analyzed. The geometry is illustrated in Fig. 4.
The source is located a distance z3 above the xy plane with an offset from
the z axis specified by u, and v,. The observation plane is allowed



to differ from that of the source. Discussion will be limited to surface 79
profiles specified by Eq. (15) with c4 - CS - 0 since, it may be shown
that small linear terms here principally result in linear terms in g(x,y)
and a simple shift of the cusp point as noted above. As in the previous
discussion, use will be made of a paraxial assumption that the incident
and reflected rays are at small angles relative to the z axis. This
assumption motivates the Fresnel approximation, as in Eq. (2), of
propagation related phase shifts. In this approximation the distance R,
from the source to a given point in the xy plane becomes

. (z,2 + s2)1/2 - zS(l + s2 /2z, 2 ), (16)

where 32 - (x - u2) 2 + (y - v.)2 . Let r, - (z.2 + u22 + v22)1/2 denote the

distance of the source from the origin 0 of the xy plane. The amplitude

of the upward directed wave in the exit plane, equivalent to the reflected
wave may be approximated as

p(x,y) - (q&/r s) exp(ikzs + ik(s
2/2z,) - i2kh) (17)

where q specifies the strength of the monopole source. Now the geometry
for propagation to the uv plane is as shown in Fig. 2 and it follows that
Eq. (3) is replaced by

p(u,v) - (kqt/2firsr) exp[ik(r$ + r)1 F(uv), (18)

where in Eq. (4), Eq. (5) is replaced by

- -2h(x,y) - (xU. + yVe) + [(x2 + y2 )/2z.], (19)

The following effective parameters have been used: UO - (u/z) + (us/Zs),
Ve - (v/z) + (vs/zs), and z, - (z-1 + zS-,) - . Hence the phase k# of the
integrand of F has the form previously considered with a in Eq. (8) given
by -2cj. Inspection of the Eqs. (1), (9), and (10) shows that the caustic
location is given by the condition

(4a2/27b1
2 ) (Ue - V. 2

, (20)

where here the dimensionless effective cusp point location is UG -

-2bjb 3/a2 and bj - -2cj +(2ze) -1. Equation (20) shows that a cusp curve is
traced out by varying either (u,v) or (us,v s) while holding the other point
fixed. The wavefield is given by Eq. (18) where F is given by Eqs.(11)-
(14) with U, Uc, V, and bj replaced by Ue, Uec, Ve, and bj, respectively.

To understand the nature of the approximations used in deriving
these results, it is helpful to consider the pathological case of
reflections form a concave parabolic surface of revolution which
corresponds to c2 - c4 m c 5 - 0 and cl - c3 > 0. Inspection of (19) shows
that all terms proportional to x2 and y2 vanish when the distances of the
source and observation planes from the xy plane are such that
z-1 + z9-1 - 4cj. The caustic degenerates to an image point which is
located as per the usual rules of Gaussian or paraxial optics. In this
level of approximation the image is point-like since both spherical
aberration and the effects of finite aperture size were neglected. The
Fresnel approximations, (2) and (16), were important to the derivation.
These approximations were also used in the description of the cusps(and
associated wavefields), even though the neglected phase terms are not
necessarily small for all points on the reflecting surface. This is
because it is only necessary for omitted phase terms to be negligible in
the xy regions where the stationary phase condition (6) holds.1 This also
justifies other paraxial assumptions used in deriving (17) when the local
surface slopes are small near the stationary phase points. Methods of .p
calculating reflected waves more amenable to relaxation of the paraxial
assumption and the analysis of transient signals are reviewed in Ref. 7.
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Fig. 4 For the problem considered, the wave from a point source

reflects to give a transverse cusp in the observation plane.
The reflecting surface illustrated has a height relative to the

xy plane of h(x,y) cjx 2 + C2y 2x with cl < 0 and c2 < 0.
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Fig. 5 The caustic surface sketched out from Eq. (1) by varying the distanze

z to the observation plane in Eqs. (9) and (10). Point P on that
surface is at the intersection of cusp curves in orthogonal planes.

Fig. 6 Optical simulation of a transverse cusp for the reflection
geometry illustrai-ed in Fig. 4. The screen on the left is the
observation plane and shows the cusp. The curved reflecting
surface is visible in the background.
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THE CAUSTIC SURFACE

As the observation plane is moved, the caustic parameters change so

that the cusp curve traces out a caustic surface. In the previous

section, it was implicit that the reflected wave for the class of surface

considered has a shape describable by Eq. (8), with the addition of linear
terms. Consequently, the caustic surface of the reflection problem may be
displayed by considering the caustic surfaces generated by a suitable
class of wavefront shapes. The main features of the caustic surface
associated cusps may be seen by omitting linear terms and taking a3 - 0 in
Eq. (8). We shall not concern ourselves here with wavefront shapes which
cause either a birth or a joining of cusps known respectively as lips and
beak-to-beak events.

2 ,7

Figure 5 illustrates the main features of the caustic surface for g -

a1 x
2 + a2y

2x with al > 0 and a2 > 0. The function uc(z) gives the locus of
cusp points. Inspection of Eq. (9) with the present case of b3 - 1/2z
shows that uc-+u,. m -a1 /a2 as z-*o. Figure 5 shows three transverse cusps
in uv planes having three different values of z and having cusp points at
A, B, and C. The larger the cusp parameter D in Eq. (1), the faster the
transverse cusp curve opens up. Inspection of Eq. (10) shows that for z >
(a,)-I, D decreases for increasing z. However, when the cusp curve is
plotted in the dimensionless coordinates U and V, the corresponding cusp
parameter is a constant as z-+ 0; see Eq. (20).

Consider now the intersection of the cusp surface with a plane of
constant u < ueo. That plane intersects the locus of cusp points, say at
point B as shown in Fig. 5. The intersection of the plane with the
caustic surface traces out a quasi-longitudinal cusp curve, as may be seen
from the following analysis. Inspection of Eqs. (1), (9), and (10) shows
that the caustic curve in the plane of constant u is

-DL(Z - Zc) 3 - V2 , DT = D/(2a 2zz,)
3
, (21,22)

where zc - [2a 2 (u0 - u)] -: is the value of z where the locus of cusp

points intersects this plane. For z close to zc, the z dependence of DL
is much slower than that of (z - zC) 3 so that (21) is in essence a cubic
cusp curve in the plane of constant u. The factor DL is positive so the
minus sign in (21) indicates that this quasi-cusp opens up in the negative
z direction as shown in Fig. 5. Inspection of (22) shows that for z - zc
> (2a2)

-1 /2 , DL < D so that the longitudinal caustic opens up slower than
the transverse cusp having the same cusp point.

The salient differences of the quasi-longitudinal cusp with the
longitudinal cusp illustrated in Fig. 1 can be seen by reviewing Fig. 1.
By definition, a cylindrical wave is one for which the incident wave
retains its shape as the plane of the figure is moved up or down parallel
to itself. Furthermore the normal to the cylindrical surface is taken to
lie parallel to the plane of Fig. 1. The u axis is taken as normal to
this plane; it is therefore normal to the propagation direction. Neither
the cusp point location nor the rate at which the cusp opens depend on u.
For the quasi-longitudinal cusp, however, both zc and DL at z - zc depend
strongly on the choice of the plane of constant u since zc oc (u. - u)-'
and for u close to u00, DL Oc(U-1 - U) 7

OPTICAL SIMULATION OF ACOUSTICAL TRANSVERSE CUSPS

Some of the predictions of the previous sections were observed in the
qu-alitative optical reflection experiment shown in Fig. 6. A diverging
zeam was produced by placing a short-focal-length lens in front of the He!e laser visible on the right side of Fig. 6. Rays which diverge from

'nLs lens simulate those from the point source considered in Fig. 4. A
-' .shed mirror-like metal sheet ("Apollo metal") was bent into roughly

I - I
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the shape shown in Figs. 3 and 4 such that c( < 0 and C2 < 0. This

P.,: reflector was placed - 1 meter from the focus of the lens such that (u,,
vs, zs) - (0.1m, 0, im). To make the transverse cusp visible, a ground
glass screen was placed in the observation plane. Figure 6 was obtained
by placing a camera - 2m behind the screen and setting the screen - im

from the reflector (z - lm). The orientation of the observed cusp agrees
with the predictions of Eq. (20). (For this case a2 > 0 and x and u

increase toward the right side of Fig. 6.) Though there appears to be
some diffraction related structure near the cusp point, the detailed
features of a Pearcey pattern (see e.g. Ref. 1-3) were not resolved,
evidently because of relative smallness of the wavelength, 633 nm.

Features evident in Fig. 5 were also observed. For example, quasi-

longitudinal cusps and the cusp-point locus were made visible by placing a
thin sheet of paper longitudinally in the field of the reflected light.
It was found that the asymptote of the cusp-point locus was tilted with
respect to the z axis because the source point was displaced from the z
axis. Inspection of Eq. (20) shows this behavior is consistent with theory.

LOCATING CAUSTICS BY THE MERGING OF RAYS AND OF PULSED ACOUSTIC ECHOES

Recall from Fig. 1 that the rays from the initial wavefront to a
given point P merge if P touches the cusp curve. This section describes
rays directed to an observation point P for the case of a transverse cusp
(see Fig. 2) and how these rays merge when P touches the cusp. The
results are then used to predict the merging of travel times of reflected
acoustic pulses. The salient difference between the three rays in Fig. 1
and those to an observer within a transverse cusp is that, in the latter
case, the rays don't lie in a plane. This is evident from inspection of
Fig. 6 where three glints are visible on the reflecting surface. These
glints correspond to rays from the laser source which reflect off of the
curved surface into the (narrow) lens aperture of the camera. The camera
was purposely placed in the three-ray region such that none of the rays
would be blocked by the ground glass screen used to view the cusp.

The procedure for calculating the sites of rays from the exit plane
to an observer at P was previously describedl for g given by Eq. (8). The
equations are easily adapted to the geometry of Fig. 4, so only the method
will be outlined here. In any problem of this type, the ray sites
correspond to the simultaneous roots (xiyi) of Eqs. (6a) and (6b) for an
observer at (u,v,z). For the geometry of Fig. 4 the relevant 0(Ue.Ve,x,y)
is given by Eq. (19). For P within the cusp, there are three roots (i-
1,2, and 3) which corresponds to intersections of a parabola specified by
(6a) with a hyperbola specified by (6b). Let P' in Fig. 4 denote a point
on the reflector above some point (x,y) in the exit plane; to a distant
observer the region around P' appears bright as (x,y) - (xi,yi) . The
camera used for Fig. 6 had an aperture situated with u/z - 0. In this
case the roots are such that x1 - x3, Y1 m -Y3 , and Y2 - 0; the roots with

- 1 and 3 corresponds to the glints in the upper and lrwer left,
respectively, and i - 2 corresponds to the central glint.

When the camera aperture is placed outside of the cusp, there is only
single root and only one glint is visible. The way in which two of the
roots disappear is analyzed in Ref. 1 and is consistent with the observed
behavior of the glints summarized below. If the camera is moved
vertically from its position for Fig. 6, the glints corresponding to i - 1
and 2 move together and merge when the aperture reaches the cusp curve.
The merged glints (and corresponding root) disappears as the aperture
crosses the cusp curve. Let ; denote a unit vector in the xy plane
parallel to the relative displacement of the merging roots as
(u,v) -+ (ucc,vcc) where (uc,Vrcc) denotes a point on the cusp curve. Let n
be tangent to the transverse cusp curve at (uccvcc). It may be shown
that m is perpendicular to n. The observations were in qualitative

- . - ' ..- - ~ .- . - ~ ,-. -. . . .~---. --- - . -. -. -
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agreement with this prediction which suggests a novel method for inferring
the orientation of the caustic.

The analysis of ray sites may be used to predict the sequences of
pulses received at (u,v,z) for the reflection geometry illustrated in Fig.
4. (The direct pulse from the source is not included in this discussion.)
For (u,v,z) in the three ray region, a pulse will be received for each
ray, i - 1, 2, and 3. Identification of the propagation related phase
delays in Eqs. (18) and (19) shows that, from the source to the receiver,
the travel time Ati for each pulse is such that

At1 c - r$ + r + (Ue, Ve, X - xi, y - yi). (23)

As the points (xg,y) merge when (u,v,z) touches the cusp surface, so will
the Ati of the corresponding echoes. Only a single echo remains as
(u,v,z) is shifted into the one-ray region. The merging of echoes may be
used to locate the cusp surface by moving either (u,v,z) or (u.,vsz2).
These features are consistent with previous discussions of seismic echoes
from a syncline.7,11 The detailed impulse response may be inferred from
Ref. 6.
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